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The problem of the oscillatory flow of pseudoplastic liquid in vicinity of the infinitely long 
horizontal plane is formulated in stresses. For Re--+ ex) i.e. for conditions of oscillatory boundary 
layer the problem is solved approximately by the Galerkin method. 

A detailed theoretical study of oscillatory flows in non-Newtonian liquids is significant 
first of all in relation to the possibility of mechanical liquefying .of pseudoplastic 
materials by vibration of walls 1• Analytical approximations 2 which have been pro­
posed and which are based on motion equations given in velocities have not led 
to reasonable estimates of the degree of liquefying. The corre"sponding limiting 
problem is here formulated in stresses which, in simple analytical approximations 
of the stress field, leads to considerably better estimates of the degree of liquefying 
than the earlier published approximations of the velocity field2 • 

FORMULA nON OF THE PROBLEM IN STRESSES 

The motion of the film of liquid material of the thickness h is considered situated 
on the horizontal flat plate in unidirectional oscillatory motion in its own plane. 
The Cartesian coordinates (x, y, z) are selected so that x is changing in the direction 
perpendicular to the plane and z is changing in the direction parallel with tl).e direction 
of the plane motion. The basical spacial symmetries of the problem can b~ expressed 
by the relations for Cartesian coordinates of velocity and stress 

Vx = Vy = 0 , Vz = vet, x) (Ja) 

(I b) 

where t is the time variable. 
The di.fferential momentum balance in the direction of action of the plane can be 

expressed by the relation 

(2) 
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Only purely viscous materials are considered with the viscosity function 

y = HTJ, y[ -T] = -Y[T]. (3a,b) 

where y is the shear velocity 

y = a.v. (4) 

The boundary conditions of the problem at the assumption that there is 110 slip 
between the material and the oscillating wall and that 011 the free surface of the material 
no net forces act can be formulated by equations 

v(t, x) = vo(t); x = 0 (5) 

r(t, x) = 0 ; x = h. (6) 

With respect to Eq. (2) the boundary condition (5) can be substituted by the condition 
in stresses 

(7) 

and the condition (6) can be, on the contrary, expressed in velocities 

(8) 

The boundary conditions, in the case when vo(t) reflects periodical asymmetry 

vo(t + nlro) = -vo(t), (9) 

can bi! supplemented by similar conditions for the field v(t, x) and ret, x) 

vet + nlro, x) = -vet, x) (10a) 

r(t + nlro, x) = -ret, x). (lab) 

The equation of motion can bi! also expressed either in velocities 

(11) 

the function .. = iCY) being inversion to the function y = y[ .. ], or in stresses 

(12) 
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Thus it depends only on our choice if the considered physical problem is solved 
in stresses, Eqs (6), (7), (lOb) and (12) or in velocities, Eqs (5), (8), (iOa) and (11). 
Both fields are related by relation 

vet , x) = Vo(/) + {HT(l, ~)] d~ (i3a) 

or 

T = r[o.v] . (13b) 

It is more usual to formulate and solve the problems of the considered type in velo­
cities, see literature survey in our recent publication 1. Nevertheless, the solution of the 
problem in stresses has at least two advantages. First, at the calculation of the velo­
city field from the stress field according to Eq . (1 3a) only integration is needed, while 
the inversion operation according to (13b) requires derivation of the velocity field. 
At second , the boundary condition (7) for the stress field directly requires the dif­
ferential momentum balance on the wall. This has a certain significance in appro­
ximative solutions of the problem by the Galerkin method. 

Let some field F(t, x) be defined by the partial differential equation 

~{F} = 0 , (t, x) E A (14) 

a nd by the corresponding boundary conditions. The field F is approximated by some 
trial function J(t, x; OCl' • • • , OCN, ••• ) with certain, in general unrestricted, numbet.., _ 
of adjustable parameters (oc 1 , • • • , OCN' ••• ). Let the function J be introduced so that 
for the arbitrarily and independently chosen parameters (ock) it satisfies all boundary 
conditions of the problem. The Galerkin method of determination of parameters 
(oc 1, ... , ocN, ..• ) is based on solution of the system of algebraic equations of the type 

ffAOJ ~{J} dt dx = 0; i = 1, .. . , N, ... (i5) 

oJ = oJ(t, x ; oc 1 , , ••• , oci, ... , OCN, ••• )/OOCi ' (16) 

We can see that for the considered problem of periodical oscillations more a priori 
dynamic requirements on the system of trial functions are included in formulations 
in stresses than in the formulation in velocities. Beside the integral conditions (15) 
the stress field is bound also by the dynamic condition ~{J} = 0 on the wall which 
is expres~ed by the relation (7). The kinematic condition (5) is of significance in the 
case of calculation of the velocity field according to (13a) . 
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ApPROXIMATIVE SOLUTION for Re ~ CIJ 

Here, only the special case of the above formulated problem is considered. Harmonic 
oscillations of the plane, are considered 

Vo = aro cos (rot) (17) 

with the power-law viscosity function 

y[-r] = [-r/K]l/n = -[ _-r/K]l/n. (18) 

If the parameters a, ro, (2, K are used for introduction of the normalized variables 

Y = x/LB; T = tro; V = v/(aro); S = -r/-rB' (19) 

where 

(20) 

are considered to be the characteristic stress and characteristic length, the normalised 
formulation of the boundary problem is reached in stresses 

'@{S} == 8T [S]1/n - 8~yS = 0 

S(T + n, Y) = -S(T, Y) 

8y S = - sin T; Y = 0 

S = 0; y= Re1/(1+n). 

(21) 

(22) 

(23) 

(24) 

The only macroscopic parameter of the problem is the Reynolds number in the 
forin 

(25) 

In the following part, only the asymptotic case 

Re ~ CIJ, (26) 

is considered, corresponding to the cases 

h ~ CIJ ,a ~ CIJ, resp. ro ~ CIJ • 
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The approximative solution is supposed, with regard to the structure of the 
exact solution2 for n = 1 in the form 

SeT, Y; A, B) = ,1-2 exp (-AY)(AS* - BC *), 

S* = sin (T - BY) 

C* = cos (T - BY) 

,1 = (A2 + B2)1 /2 , 

with the pair of adjustable parameters A and B. 

(27) 

(28a) 

(28b) 

(29) 

Determination of parameters A and B by the Galerkin method leads to the solu­
tion of the system of two equations 

(30a) 

(30b) 

where the trial function S is defined by Eq. (27). Substitution of Eq. (27) into (30a,b) 
leads to the system of two algebraic equations for A and B with the solution 

A _ B_1 ( 2T(1/(2n)) )0/(1 +0) 

- - J 2 (1 + n) J rr T(1/(2n) +3/2) 
(31) 

i.e. 

SeT, Y) ;::J 2- 1
/
2A- l exp (-AY) sin (T - AY - rr/4). (32) 

This · solution is identical for n = 1 with the exact solution of the considered 
problem. 

For application of the theory of periodical shear-s l in the region of large Re values 
the function x( n) 

x(n) = 1 ~ 2nfoof2nIS(T, Y)ll /0-1 dYdT, 
n 2rr 0.0 

(33) 

is significant, giving the effect of periodical oscillations of the effective viscosity 
in the oscillating boundary layer. If the stress field is approximated by the relation 
(32), the corresponding approximation of the function x(n) can be found in the form 
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l1:(n) ~ (1 + 2n)(1 + 11) A2 
11(1 - n) 

with asymptotic approximations 

11:(11) ~ 

DISCUSSION 

{ 

_ 3 _ _ 2.58; (11 ~ L) 
1 - n 

1 + 411 (2.1611)30; (11 ~ 0+) . 
2n 

2913 

(34) 

(35a ,b) 

The boundary problem represented by the system of Eqs (21) to (23) has for l/n ~ 
~ 1 an essential nonlinearity due to which the possibility of exact analytical solution 
is very improbable. The proposed numerical solutions of this problem 3 - 5 by the mesh 
method have in the region of intermediate Re a considerable inaccuracy, characterized 
by a 10-20% error in integral momentum and mechanical energy balances. More­
over in the region of large Re the solution by the mesh method fails , as for T = const. 
the velocity profile has an alternating shape with extremes and inflexes whose number 
increases in direct proportion with Re1/( 1 + 0). This was the reason why we have 
attempted an analytical approximation of the velocity field 2 and also for the pre­
sented attempt for approximation of the stress field. 

The approximation of the stress field according to Eqs (31) and (32) has in com­
parison with the analytical approximation2 certain advantage partly in that it 
satisfies the boundary condition of the wall Eq. (23) and that it leads for n ~ 0 
to finite values of stresses on the walls. Another advantage of the new approximation 
is the considerably better estimate of the size of liquefying in the regime of oscillating 
boundary layer1. 

In a number of other considerations e.g. at comparison with the exact solution 
for ideal plastic material6 the structure of the two-parameter trial function (27) 
does not seem quite suitable and the question of improvement of the approximation 
by a suitable selection of the multiparameter trial function will be subject of our 
next studies. 
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